ACAP Latest News

Read about recent developments and findings in procellariiform science and conservation relevant to the Agreement on the Conservation of Albatrosses and Petrels in ACAP Latest News.

Scopoli’s Shearwaters, Northern Gannets and West African fisheries: need for improved marine conservation

David Gremillet (CEFE-CNRS, Montpellier, France) and colleagues have published in the journal Biological Conservation on movements of Scopoli’s Shearwaters Calonectris diomedea and Northern Gannets Morus bassanus off West Africa.

The paper’s abstract follows:

“Foreign fisheries massively harvest waters off West Africa, plundering local marine economies and threatening African food security.  Here we warn that these fisheries might affect both juvenile and adult European seabirds during their autumn migration and at their wintering grounds.  Using miniaturised GPS, satellite transmitters and geolocators, we tracked the migratory movements of 64 adult and juvenile Northern gannets (Morus bassanus) and Scopoli’s shearwaters (Calonectris diomedea) after their breeding season in the eastern Atlantic and the Mediterranean Sea, respectively.  It was the first time ever that the movements of gannet fledglings were tracked with GPS accuracy.  During winter (October to March) birds made extensive use of marine areas within the exclusive economic zones of Morocco, Western Sahara, Mauritania and Senegal.  These juvenile and adult European seabirds are therefore dependent upon African marine resources and at risk from competition with fisheries, as well as intentional and incidental mortality by fishing gear.  Those threats occur additionally to detrimental seabird–fishery interactions in Europe.  There is an urgent need for improved marine conservation off West Africa, and our data demonstrating connectivity between specific European breeding colonies and African wintering areas are a major step towards stakeholder involvement.”

 

Cory's Shearwater at sea, photograph by Jacob Gonzalez-Solis

Reference:

Gremillet, D., Peron, C., Provost, P. & Lescroel, A. 2015.  Adult and juvenile European seabirds at risk from marine plundering off West Africa.  Biological Conservation 182: 143-147.

John Cooper, ACAP Information Officer, 06 January 2015

Taxonomic status of Shy and White-capped Albatrosses

George Sangster (Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden) and colleagues write in the ornithological journal Ibis on the taxonomic status of the shy albatross complex.  They recognize three species, regarding the Shy Albatross Thalassarche cauta (endemic to Australia) and the White-capped Albatross T. steadi (endemic to New Zealand) as conspecific and separable at the subspecific level.

ACAP currently recognizes these two taxa as full species, as does BirdLife International/IUCN, with both being categorized as Near Threatened.

The 10th Report of the Taxonomic Sub-Committee of the BOU Records Committee writes of the shy albatross taxon as follows:

“A phylogeographical analysis based on mitochondrial DNA sequences indicates that Shy Albatross comprises three major groups: eremita, salvini and cauta/steadi (Abbott & Double 2003a).  Of these, eremita and salvini are sister taxa, and cauta/steadi their closest relatives (Nunn & Stanley 1998, Chambers et al. 2009).  These three groups differ in plumage and bare-parts coloration.  Adult eremita has dark grey plumage on the head and neck and a bright yellow bill, while salvini has noticeably lighter grey head and neck plumage and a grey bill with a contrasting pale yellow upper ridge, and adult cauta/steadi has white head, neck and upper mantle, and a pale grey bill with a pale yellow upper ridge (Marchant & Higgins 1990, Tickell 2000, Brooke 2004).

The taxa cauta and steadi show a single fixed nucleotide difference, minor plumage differences and mean differences in morphometrics but do not form reciprocally monophyletic groups (Abbott & Double 2003a,b, Double et al. 2003).  Current evidence provides insufficient support for recognizing cauta and steadi as full species.  Based on the combination of morphological and molecular data, recognition of three species is warranted:

Shy Albatross Thalassarche cauta (polytypic, with subspecies cauta, steadi)

Chatham Albatross Thalassarche eremita (monotypic)

Salvin's Albatross Thalassarche salvini (monotypic)

Shy Albatross is on the Western Palaearctic list based on a single record in Egypt and Israel (February–March 1981, Shirihai 1996, see also Cole 2000).”

A White-capped Albatross stands over its chick, photograph by David Thompson

Reference:

Sangster, G., Collinson, J.M., Crochet, P.-A., Kirwan, G.M., Knox, A.G., Parkin, D.T. & Votier, S.C. 2014.  Taxonomic recommendations for Western Palaearctic birds: 10th Report.  Ibis 157: 193-200.

John Cooper, ACAP Information Officer, 05 January 2015

PCBs and corticosterone in Wandering Albatrosses and other polar seabirds

Sabrina Tartu (Centre d'études biologiques de Chizé, Villiers-en-bois, France) and colleagues have published in the journal Environmental Pollution on polychlorinated biphenyl exposure and corticosterone levels in ACAP-listed Wandering Albatrosses Diomedea exulans and in Snow Pagodroma nivea and Cape or Pintado Daption capense Petrels.

The paper’s abstract follows:

“The role of polychlorinated biphenyls (PCBs) on exposure-related endocrine effects has been poorly investigated in wild birds.  This is the case for stress hormones including corticosterone (CORT).  Some studies have suggested that environmental exposure to PCBs and altered CORT secretion might be associated.  Here we investigated the relationships between blood PCB concentrations and circulating CORT levels in seven free-ranging polar seabird species occupying different trophic positions, and hence covering a wide range of PCB exposure.  Blood ∑7PCB concentrations (range: 61–115,632 ng/g lw) were positively associated to baseline or stress-induced CORT levels in three species and negatively associated to stress-induced CORT levels in one species.  Global analysis suggests that in males, baseline CORT levels generally increase with increasing blood ∑7PCB concentrations, whereas stress-induced CORT levels decrease when reaching high blood ∑7PCB concentrations.  This study suggests that the nature of the PCB-CORT relationships may depend on the level of PCB exposure.”

Wandering Albatross and chick, photograph by John Cooper

With thanks to Margaret Koopman for information.

Reference:

Tartu, S., Angelier, F., Bustnes, J.O., Moe, B., Hanssen, S.A., Herzke, D., Gabrielsen, G.W., Verboven, N., Verreault, J., Labadie, P., Budzinski, H., Wingfield, J.C. & Chastel. O. 2015.  Polychlorinated biphenyl exposure and corticosterone levels in seven polar seabird species.  Environmental Pollution 197:173-180.

John Cooper, ACAP Information Officer, 04 January 2014

UPDATED: Testing the Smart Tuna Hook

ACAP Latest News has received a media release from Oceansmart, a company based in Queensland, Australia that reports on progress with testing its Smart Tuna Hook.  The following information is extracted from the company’s media release of 4 December last year.

Sunshine Coast Company Ahi Enterprises, trading as Oceansmart, has been working towards an effective solution to reduce the mortality of seabirds and turtles that are hooked and die as a result of trying to eat tuna longline fishing baits.  Ahi Enterprises CEO Hans Jusseit says the solution has come from within the industry itself.  By working closely with the longline fishing industry the team at Oceansmart has developed and patented the Smart Tuna Hook (winner of the ABC Television’s New Inventors).  The Smart Tuna Hook aims to render longline bait inaccessible to seabird or turtle species, thus saving their lives and allowing the bait to sink rapidly to the feeding depth of the intended catch, mainly tuna and Swordfish.

Smart Tuna Hooks with fitted shields

The shield gets fitted to a baited Smart Tuna Hook

Photographs by Barry Baker

“The aim is to conserve the species that are not being targeted and to increase the efficiency for the fishing operators.  The Smart Tuna Hook enables the targeted fish to be caught more efficiently making the entire industry more environmentally friendly, more viable as well as safer without the need to have lead weights on their [sic] lines.”

Trials held in South Africa show that the Smart Tuna Hook reduces seabird (albatross & petrel) bycatch by 80-90% with no detrimental effect on fishing operations and no increase in cost or effort.  The experimental testing was undertaken by Barry Baker, past Chair of ACAP's Seabird Bycatch Working Group.  Further catch trials were due to be held in December 2014 in an effort to obtain further significant results.

Click here for an earlier ACAP news item on the Smart Tuna Hook.  Development of the smart hook has been funded previously by the ACAP Small Grants Programme under project ACAP 12-03 "Seabird mitigation effectiveness of the Smart Tuna Hook in Tuna longline fishing".

With thanks to Barry Baker and Hans Jusseit for information and photographs.

Selected Literature:

Anon. nd.  Innovation Case Study: The Smart Hook System.

Baker, G.B. & Candy, S.G. 2014.  Proof of Concept Experiment to Demonstrate the Efficacy of the ‘Smart Tuna Hook’.  Report prepared for AHI Enterprises.  [Kettering]: Latitude 42 Environmental Consultants.  24 pp.

Jusseit, H. 2010.  Testing Seabird and Turtle Mitigation Efficacy of the Smart Hook System in Tuna Long-line Fisheries - Phase One.  Ahi Enterprises.  15 pp.

John Cooper, ACAP Information Officer, 03 January 2015, updated 08 January 2015

UPDATED: Ecuador's Environmental Ministry hears of the NISURI tube to reduce seabird mortality in artisanal longlining

The Seabird Program of the USA-based NGO American Bird Conservancy (ABC) has reported to the ACAP Secretariat on its recent efforts to reduce seabird mortality in Ecuador’s artisanal longline fishery.  The following information is taken from the ABC press release.

A new technique designed to reduce bycatch in Ecuadorian fisheries of seabirds such as the Critically Endangered Waved Albatross Phoebastria irrorata and the Vulnerable Black Petrel Procellaria parkinsoni was presented at a recent meeting with representatives of Ecuador’s Environmental Ministry.

The Waved Albatross is often attracted by baited hooks and can become entangled in line and hooks, photograph by Giovanny Suarez/ABC

The meeting, which focused specifically on the issue of seabird bycatch in the artisanal hake fishery in Ecuador, was held in the offices of the Ministry of the Environment on 5 December 2014.  The new fishing innovation – known as the NISURI device – aims to reduce by up to 90% the time that baited fishing lines are cast in the water with bait visible to birds.  Line setting using this technique is cut from 8 to >20 minutes to 1-2 minutes.

Artisanal fishing boats, Santa Rosa, Ecuador, photograph by Nigel Brothers

Ecuadorian artisanal fishers use the  NISURI tube to reduce seabird interactions, photograph by Nigel Brothers

To employ the NISURI device, Ecuadorian fishers typically prepare up to 400 baited hooks and insert them into a 1.8-m long PVC plastic tube which holds the lines while protecting the bait from birds. The NISURI tube acts like a chute to deploy the lines without the possibility of hooks being caught in a fisher’s hand or a bird’s bill while the boat is underway.

At the conclusion of the meeting the participants agreed to continue to work together to promote the new method and expand its use in artisanal hake fisheries through supporting fishers’ workshops in other ports in Ecuador.

A paper on the NISURI system was presented and discussed at the Sixth Meeting of the ACAP Seabird Bycatch Working Group, held in Punta del Este, Uruguay during September this year.

With thanks to Hannah Nevins, American Bird Conservancy for information.

Selected literature:

Brothers, N., Holly Freifeld, H., Suarez, G. & Wallace, G. 2014.  NISURI Fastset – a simple, cheap and effective artisanal demersal longline setting system to reduce seabird bycatch.  Sixth Meeting of the Seabird Bycatch Working Group Punta del Este, Uruguay, 10 - 12 September 2014.  SBWG6 Doc 14  [Summary]  3 pp.

John Cooper, ACAP Information Officer, 02 January 2015, updated 09 and 13 January 2015

The Agreement on the
Conservation of Albatrosses and Petrels

ACAP is a multilateral agreement which seeks to conserve listed albatrosses, petrels and shearwaters by coordinating international activity to mitigate known threats to their populations.

About ACAP

ACAP Secretariat

119 Macquarie St
Hobart TAS 7000
Australia

Email: secretariat@acap.aq
Tel: +61 3 6165 6674