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SUMMARY   

Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively 

influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg 

burdens than all other avian families. Here, we measure total Hg (THg) concentrations of 

body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South 

Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989–2013) and 

make comparisons with other breeding populations; (ii) identify factors driving variation in 

THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. 

feather THg concentrations were 13.0 ± 8.0 µg g−1 dw, which represents a threefold 

increase over the past 25 years at South Georgia and is the highest recorded in the 

Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), 

significantly influenced THg concentrations—feathers moulted in Antarctic waters had far 

lower THg concentrations than those moulted in subantarctic or subtropical waters. THg 

concentrations also increased with trophic level (δ15N), reflecting the biomagnification 

process. There was limited support for the influence of sex, age and previous breeding 

outcome on feather THg concentrations. However, in males, Hg exposure was correlated 

with breeding outcome—failed birds had significantly higher feather THg concentrations 

than successful birds. These results provide key insights into the drivers and consequences 

of Hg exposure in this globally important albatross population. 

RECOMMENDATION  

It is recommended that the PaCSWG encourages more research on sub-lethal effects of 

pollutants, and the incorporation of these impacts when modelling population trends. 

https://doi.org/10.1098/rspb.2020.2683
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Exposición al mercurio de una especie de ave marina en 

peligro: cambios a largo plazo y relaciones con la ecología 

trófica y el éxito reproductivo 

RESUMEN 

El mercurio (Hg) es un contaminante ambiental que, en altas concentraciones, puede influir 

negativamente en la fisiología y demografía de las aves. Los albatros (Diomedeidae) se ven 

expuestos a una carga de Hg más alta que todas las demás familias aviares. En este caso, 

medimos las concentraciones totales de Hg (HgT) en plumas corporales de ejemplares 

adultos de albatros de cabeza gris (Thalassarche crysostoma) de las islas Georgias del Sur 

(South Georgia Islands). Específicamente, i) analizamos las tendencias temporales en las 

islas Georgias del Sur (South Georgia Islands) (1989-2013) y hacemos comparaciones con 

otras poblaciones reproductoras; ii) identificamos los factores que impulsan la variación en 

las concentraciones de HgT y iii) examinamos las relaciones con el éxito reproductivo. La 

media ± DE de las concentraciones de HgT de las plumas fue de 13,0 ± 8,0 µg g−1 (peso 

seco), lo que representa un aumento al triple en los últimos 25 años en las islas Georgias 

del Sur (South Georgia Islands) y es el registro más alto para el género Thalassarche. El 

hábitat de alimentación, inferido de relaciones isotópicas estables de carbono (δ13C), influyó 

significativamente en las concentraciones de HgT: las plumas mudadas en aguas antárticas 

tenían concentraciones de HgT mucho más bajas que las mudadas en aguas subantárticas 

o subtropicales. Las concentraciones de HgT también aumentaron con el nivel trófico (δ15N), 

lo cual refleja el proceso de biomagnificación. Hubo apoyo limitado a la influencia del sexo, 

la edad y los resultados reproductivos previos en las concentraciones de HgT de las plumas. 

Sin embargo, en los machos, la exposición al Hg se correlacionó con el resultado de la 

reproducción: las aves que no tuvieron éxito presentaban concentraciones de HgT en las 

plumas significativamente más altas que las aves que sí lo tuvieron. Estos resultados 

proporcionan información clave sobre los factores determinantes y las consecuencias de la 

exposición al Hg en esta población de albatros de importancia mundial. 

RECOMENDACION 

Se recomienda que el GdTPEC fomente más investigaciones sobre los efectos subletales de 
los contaminantes y la incorporación de estos impactos al modelar las tendencias de la 
población. 
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Exposition au mercure d’une espèce d’oiseau marin en 

danger : effets à long terme et liens avec l’écologie trophique 

et le taux de reproduction 

RÉSUMÉ 

Le mercure (Hg) est un polluant environnemental qui, à des concentrations élevées, peut 

entraîner des effets néfastes sur la physiologie et la population aviaire. Les albatros 

(Diomedeidae) enregistrent un taux de mercure plus élevé que toutes les autres familles 

d’oiseau. Nous mesurons ici les concentrations totales de mercure (THg) dans les plumes 

sur le corps des albatros Thalassarche chrysostoma adultes en Géorgie du Sud. Plus 

précisément, (i) nous analysons l’évolution dans le temps en Géorgie du Sud (1989-2013) 

et comparons les résultats avec d’autres populations reproductrices ; (ii) nous identifions les 

facteurs entraînant des variations des concentrations THg et (iii) examinons les liens avec 

le taux de reproduction. La concentration THg moyenne ± SD dans les plumes était de 13.0 

± 8.0 µg g−1 dw, soit une multiplication par trois au cours des 25 dernières années en 

Géorgie du Sud. C’est la concentration la plus élevée du genre Thalassarche. L’habitat lié à 

disponibilité de nourriture, déduit à partir des rapports des isotopes stables du carbone 

(δ13C), a une influence considérable sur les concentrations THg ; les plumes des mues 

dans les eaux antarctiques avaient des concentrations THg bien plus faibles que celles des 

mues dans les eaux subantarctiques ou subtropicales. L’augmentation des concentrations 

THg est également liée au niveau trophique (δ15N), reflétant le processus de 

bioamplification. Peu de données ont étayé l’influence du sexe, de l’âge et des taux de 

reproduction antérieurs sur les concentrations THg. Toutefois, chez les mâles, des liens ont 

été établis entre l’exposition au mercure et le taux de reproduction ; les concentrations THg 

étaient bien plus élevées dans les plumes des oiseaux dont la reproduction avait échoué 

que dans celles des oiseaux pour lesquels elle avait réussi. Ces résultats fournissent des 

informations essentielles concernant les facteurs et les conséquences de l’exposition au 

mercure sur cette population d’albatros largement répandue dans le monde. 

RECOMMANDATION 

Il est recommandé au GTSPC d’encourager les recherches sur les effets sublétaux des 

polluants et la prise en considération de ces impacts lors de la modélisation de l’évolution 

de la population. 
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Mercury (Hg) is an environmental contaminant which, at high concentrations,
can negatively influence avian physiology and demography. Albatrosses
(Diomedeidae) have higher Hg burdens than all other avian families. Here,
we measure total Hg (THg) concentrations of body feathers from adult grey-
headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically,
we (i) analyse temporal trends at South Georgia (1989–2013) and make
comparisonswith other breeding populations; (ii) identify factors driving vari-
ation in THg concentrations and (iii) examine relationships with breeding
success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g−1 dw,
which represents a threefold increase over the past 25 years at South Georgia
and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred
from stable isotope ratios of carbon (δ13C), significantly influenced THg
concentrations—feathers moulted in Antarctic waters had far lower THg con-
centrations than those moulted in subantarctic or subtropical waters. THg
concentrations also increased with trophic level (δ15N), reflecting the biomag-
nification process. There was limited support for the influence of sex, age and
previous breeding outcome on feather THg concentrations. However, inmales,
Hg exposure was correlated with breeding outcome—failed birds had signifi-
cantly higher feather THg concentrations than successful birds. These results
provide key insights into the drivers and consequences of Hg exposure in
this globally important albatross population.

1. Introduction
Mercury (Hg) is a pervasive environmental contaminant that can negatively
impact humans andwildlife [1]. Hg derives from both natural and anthropogenic
sources; however, human activities have increased the global Hg pool and projec-
tions suggest that global anthropogenic Hg emissions are likely to increase [2–4].
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Figure 1. Location of Bird Island, South Georgia (cross), in relation to the
APF (dashed line) and STF (dot-dash line).
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In its gaseous, elemental form, Hg can travel long distances
to remote locations through atmospheric transport [5]. Once
deposited in the marine environment, inorganic Hg (iHg) is
converted (through methylation) to the more toxic form,
methyl-Hg ([CH3Hg]+; or MeHg), which, once assimilated,
bioaccumulates in marine organisms and biomagnifies
through food webs from lower to higher trophic levels [6,7].
Long-lived marine top predators, such as many seabird
species, are therefore potentially exposed to high Hg
concentrations through their prey [8].


Seabirds are often used as indicators of marine ecosystem
health [9], including the bioavailability of Hg [10,11]. Studies
of seabird communities in the Southern Hemisphere, from
Antarctica to the subtropics, have revealed considerable
interspecific variation inHg contamination [12–17]. The Procel-
lariiformes (albatrosses and petrels) are themost abundant and
diverse seabird group in the Southern Ocean, and albatrosses
(Diomedeidae) are consistently the most contaminated family
of birds [18–20]. Phylogeny exerts a major influence on
Hg exposure among albatrosses, such that members of the
Diomedea genus typically display the highest levels [12,18].
Indeed, in the oceans, only some marine mammals show
higher Hg concentrations [21]. Hg contamination within sea-
bird populations is often highly variable and governed by
factors such as age, sex, breeding status and foraging ecology
[8,16,22]. Moreover, at high concentrations, Hg can have fitness
consequences [23–25]. To date, the drivers of intraspecific vari-
ation in Hg contamination, and its consequences for breeding
and survival, have only been studied in one albatross species,
the wandering albatross (Diomedea exulans) [26–29].


The present study focuses on grey-headed albatrosses (Tha-
lassarche chrysostoma) breeding at South Georgia—a remote
island south of the Antarctic Polar Front (APF) in the Atlantic
sector of the Southern Ocean. South Georgia hosted 47 674
breeding pairs of this species in 2003/2004, which represented
by far the largest population globally (approx. 50%), but has
been in long-term decline and is currently listed as endangered
by theWorld Conservation Union [30,31]. This species is extre-
mely long-lived [32], and forages at mid- to high trophic
levels—predominantly consuming cephalopods, but also fish
and Antarctic krill (Euphausia superba) [33,34]. During the
non-breeding period, free from the constraints of central-
place foraging, birds disperse across a wide range of oceanic
habitats though mainly targeting the Subantarctic Zone
(SAZ) between the APF and the Subtropical Front (STF)
[35–37]. Hg exposure tends to be high in this species, with
intrapopulation variation reflecting its generalist feeding
habits and wide foraging range [18]. In this cross-sectional
study, we measured feather THg concentrations in a very
large sample of individuals of known age, sex and breeding
history. The vastmajority (>90%) of the THg excreted into alba-
tross body feathers is MeHg [18,19,38]. Ourmain aimswere to:
(i) analyse long-term trends in Hg exposure of this species at
South Georgia (1989–2014); (ii) examine large-scale spatial
variation in Hg exposure by comparing our data with other
breeding populations [12,14,18,39]; (iii) assess Hg exposure in
relation to intrinsic factors (sex, age and breeding history)
and, using stable isotope ratios as proxies, to foraging habitat
(δ13C) and trophic level (δ15N) and (iv) test for short-term
relationships between Hg exposure and subsequent breeding
outcome. This final point is of particular interest, given that
breeding success in this population is low and highly variable,
contributing to its long-term decline [40].

2. Material and methods
(a) Study site and sample collection
Fieldwork was carried out at Bird Island, South Georgia
(54°000 S, 38°030 W) (figure 1). Since the 1970s, intensive study-
colonies of grey-headed albatrosses have been visited daily to
weekly throughout the breeding season to record the identities
of breeders and non-breeders, laying and fledging dates, and
nest survival [40]. Chicks have been ringed annually and the
modal age of first breeding is 12 years [41]. Birds were sexed
from records of observed copulatory position, egg-laying attend-
ance pattern or using DNA extracted from blood samples [42].
All birds bred in the sampling year. A random collection of rela-
tively unabraded body feathers were obtained from the breast
region of adults (n = 78) of known breeding history in December
and January in the 2013/2014 breeding season. Grey-headed
albatrosses are not in active body feather moult at Bird Island
between October and February [43]; hence, THg concentrations
and stable isotope ratios (see below) of body feathers sampled
during the breeding season should reflect Hg burdens, foraging
areas and trophic levels when grown in the preceding non-
breeding period. Previous studies of Hg in grey-headed
albatrosses at South Georgia (reflecting THg concentrations in
1989, 1998 and 2001)were of feathers collected in a similarmanner.


(b) Total mercury analysis
Hg in feathers is essentially inert and cannot be reincorporated
into body tissues [44]. Feathers were cleaned of surface lipids
and contaminants using chloroform :methanol solution
(2 : 1v/v) followed by successive Milli-Q® water rinses. Feathers
were air-dried and cut into small fragments with stainless steel
scissors. For each individual, three feathers were analysed separ-
ately and whole feathers were analysed excluding only the
rachis. Feather THg concentrations were measured using an
Advanced Mercury Analyser spectrophotometer (Altec AMA
254) at the laboratory Littoral Environnement et Sociétés
(LIENSs, France). For each individual feather, a minimum of
two aliquots (range: 0.40–1.50 mg dry weight [dw]) were ana-
lysed, and the means and relative standard deviation between
measurements were calculated (all samples RSD <10%). THg con-
centrations are presented in µg g−1 dw. Accuracy was tested using
a certified reference material (dogfish liver DOLT-5, NRC,
Canada; certified Hg concentration: 0.44 ± 0.18 µg g−1 dw) every
10 samples. The measured values were 0.46 ± 0.02 µg g−1 dw
(n = 21), and thus, the recovery rate was 105 ± 5%. Blanks were
analysed at the beginning of each set of samples and the detection
limit of the method was 0.005 µg g−1 dw.







Table 1. Results from previous studies measuring total mercury (THg) concentrations (µg g−1 dw) in body feathers of grey-headed albatrosses (T. chrysostoma).
Values presented are means ± s.d. (range). Sampling procedure refers to whether THg concentrations were measured separately in multiple feathers (individual)
or if multiple feathers were pooled before analysis (pooled).


breeding site location sampling year n sampling procedure feather THg (µg g−1 dw) reference


South Georgia 1989 34 pooled 4.20 ± 2.27 (1.22–11.00) Thompson et al. [39]


1998 19 pooled 8.93 ± 2.85 Becker et al. [14]


2002 15 pooled 9.50 ± 2.84 (4.34–13.24) Anderson et al. [12]


2006 10 individuala 7.35 ± 7.57 (2.12–28.25) Cherel et al. [18]


2014 78 pooled 13.08 ± 6.56 (3.46–31.65) present study


2014 229 individual 13.04 ± 8.03 (2.06–35.14) present study


Campbell Island 1988 30 pooled 6.91 ± 2.40 (3.10–13.63) Thompson et al. [39]


2013 20 individuala 9.50 ± 3.11 (3.79–15.53) Cherel et al. [18]


Prince Edward Islands 2006 11 individuala 7.12 ± 3.21 (3.00–14.07) Cherel et al. [18]
aAnalyses were based on a single feather per individual.
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(c) Stable isotope analysis
Stable isotope ratios of carbon (13C/12C, expressed as δ13C) and
nitrogen (15N/14N, δ15N) were measured on the same individual
feathers as THg concentrations. Feather stable isotope ratios reflect
those of prey during the period of their synthesis, and because they
aremetabolically inert once grown they preserve an isotopic record
of diet at the time of formation [45,46]. For stable isotope analyses,
cleaned and cut feathers were packed into tin capsules (aliquots:
0.70 ± 0.01 mg [mean ± s.e.]). Stable isotope analyses were con-
ducted at the Natural Environment Research Council (NERC)
Life Sciences Mass Spectrometry Facility in East Kilbride. Stable
isotope ratios of carbon and nitrogen were determined by a con-
tinuous-flow mass spectrometer (Thermo Scientific [Bremen,
Germany] Delta Plus XP) coupled with an elemental analyser
(Elementar [Langenselbold, Germany] vario PYRO cube). To cor-
rect for instrument drift, three internal laboratory standards were
analysed for every 10 samples. Stable isotope ratios are reported
as δ-values and expressed as ‰ according to the equation:
δX= [(Rsample/Rstandard)− 1] × 103, where X is 13C or 15N, R is the
corresponding ratio 13C/12C or 15N/14N and Rstandard is the ratio
of international references Vienna PeeDee Belemnite for carbon
and atmospheric N2 (air) for nitrogen. Measurement precision
(standard deviation associated with replicate runs of USGS40)
was ±0.1‰ for δ13C and ±0.2‰ for δ15N.

(d) Data analysis
Analyses were conducted using R v. 3.4.4 [47]. One-way ANOVAs
and post hoc Tukey’s HSD tests were used to test for differences
among reported THg concentrations (based on three feathers
pooled) from previous studies of grey-headed albatrosses at
South Georgia. Generalized linear mixed-effects models
(GLMMs; gamma distribution and identity link function) were
used to assess variation in feather THg concentrations using
the ‘lme4’ package in R [48]. Predictor variables were trophic
level (δ15N), foraging habitat (δ13C), sex (males, n = 48; females,
n = 30), age (range: 12–36 years) and previous breeding outcome.
Although grey-headed albatrosses are predominantly biennial
breeders, with a non-breeding period lasting approximately 16
months, a minority attempt to breed annually [49]. Individuals
were therefore grouped according to their breeding outcomes
(successful, failed or deferred) in the 2 years prior to sampling.
Individual identity was included as a random effect to account
for repeated measurements. Feather δ15N and δ13C values were
included in the samemodels as therewas no evidence of collinear-
ity (all variance inflation factors greater than 2). All possible

models were ranked using the Akaike Information Criteria
adjusted for small sample sizes (AICC), and models within two
AICC units of the top model (≤2 AICC) were considered equally
plausible [50]. AICC weights (ωi) were used to assess the weight
of evidence in favour of a given model among the candidate set
[50]. Predictor variables were standardized (i.e. subtract by
mean and divide by standard deviation) to facilitate model fitting.
In a second step, one-way ANOVAs with post hoc Tukey’s HSD
tests were to identify significant differences in feather THg
concentrations among foraging zones. Feathers were assigned to
foraging zones based on their δ13C values—those correspond-
ing to foraging in the Antarctic Zone (south of the APF; less
than −21.2‰), SAZ (north of the APF and south of the STF;
−21.2‰ to −18.3 ‰) and the Subtropical Zone (north of the
STF; greater than −18.3‰) [51].


Spearman’s rank correlations were used to test for relation-
ships between feather THg concentrations and arrival date
(Julian days) of grey-headed albatrosses at South Georgia. Bino-
mial generalized linear models (GLMs; binomial distribution
and logit link function)were used to test for a relationship between
feather THg concentrations and the subsequent breeding outcome
(failed, n = 55; successful, n = 23). Predictor variables retained in
the previous models were included as covariates, and males and
females were analysed separately. Grey-headed albatrosses lay a
single egg clutch with no replacement, and both parents incubate
the egg. Significance was assumed at α = 0.05 in all analyses.

3. Results
(a) Temporal trends and spatial variation
THg concentrations were measured in 229 body feathers from
78 individual grey-headed albatrosses sampled in 2013/2014.
Average THg concentrations of body feathers were 13.04 ±
8.03 μg g−1 dw (range: 2.06−35.14 μg g−1 dw), and all
measurements were greater than 2 μg g−1 dw. A total of
190 (83%) feathers had THg concentrations greater than
5 μg g−1 dw. Feather THg concentrations measured in grey-
headed albatrosses in previous studies at South Georgia,
and other island groups are presented in table 1. Average
feather THg concentrations for the South Georgia population
in 2013 were higher than previously recorded at Campbell
Island, Marion Island (Prince Edward Islands) and South
Georgia. Average feather THg concentrations differed
between the four previous studies at South Georgia (one-







Table 2. Model selection for factors explaining variation in feather total Hg concentrations (µg g−1 dw) in grey-headed albatrosses (T. chrysostoma) from South
Georgia, sampled in 2013/2014. The top five models are shown, and all are GLMMs with individual identity included as a random effect. k, number of
parameters; AICC, Akaike information criterion corrected for small sample sizes; ΔAICC is the change in AICC from the best-supported model and ωi is the Akaike
weight.


covariates


k AICC ΔAICC ωiδ13C δ15N sex age breeding history


X X 5 1376.1 0.00 0.51


X X X 6 1378.0 1.90 0.20


X X X 6 1378.2 2.11 0.18


X X X X 7 1380.1 4.02 0.07


X X X 9 1382.6 6.58 0.02
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Figure 2. Temporal increase in mean (±s.d.) total Hg concentrations
(µg g−1 dw) of body feathers of grey-headed albatrosses (T. chrysostoma)
from Bird Island, South Georgia. Data are based on multiple body feathers
pooled per individual.
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way ANOVA, F3,143 = 23.6, p < 0.001), and post hoc Tukey’s
HSD tests (all p < 0.05) confirmed that feather THg concen-
trations in 2013 were higher than in 1989, 1998 and 2001
(figure 2).

9 11 13 15


10


body feather d15N (‰)
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Figure 3. Total Hg concentrations (µg g−1 dw) in body feathers of grey-
headed albatrosses (T. chrysostoma) from Bird Island, South Georgia, sampled
in 2013/2014, in relation to: (a) feather δ13C values and (b) feather δ15N
values. Vertical dashed lines are δ13C estimates associated with foraging
at the APF (−21.2‰) and STF (−18.3‰) [51]. Body feathers with δ13C
values associated with foraging south of the APF are coloured grey.

(b) Variation in feather total mercury concentrations
The most parsimonious GLMM explaining variation in feather
THg concentrations included the effects of δ15N (estimate ± s.e.,
3.37 ± 0.36, p < 0.0001) and δ13C (−1.34 ± 0.35, p < 0.001)
(table 2), reflecting positive relationships with trophic level
and latitude (figures 3 and 4). A similar model that also con-
tained sex as a non-significant fixed effect (0.75 ± 1.63, p =
0.64) had less than 2 ΔAICC; however, this model had a greatly
reduced ωi. Models including other predictor variables (age
and breeding history) received less support (all greater than 2
ΔAICC). Feather THg concentrations were significantly differ-
ent between moulting zones (one-way ANOVA, F2,226 = 22.41,
p < 0.001). Post hoc Tukey’s HSD tests indicated that feathers
associated with moulting in the AZ (mean ± s.d., 4.12 ±
1.20 µg g−1 dw, n = 27) had lower THg concentrations than
those associated with the SAZ (14.33 ± 7.88 µg g−1 dw, n =
184) or the STZ (13.27 ± 7.13 µg g−1 dw, n = 18); means for
these last two groupswere not significantly different (figure 4).

(c) Relationships between total mercury concentrations
and subsequent breeding outcome


No significant relationships were found between feather
THg concentrations and arrival dates of males (rS = 0.07,
p = 0.40) or females (rS =−0.01, p = 0.92). Average THg con-
centrations were significantly higher in body feathers of
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Figure 4. Mean (±s.d.) body feather total Hg concentrations (µg g−1 dw) of
grey-headed albatrosses (T. chrysostoma) from Bird Island, South Georgia,
sampled in 2013/2014, in relation to moulting zones. The Antarctic Zone
(AZ; south of the Antarctic Polar Front), Subantarctic Zone (SAZ; between
the Antarctic Polar Front and the Subtropical Front) and Subtropical Zone
(STZ; north of the Subtropical Front) are separated by δ13C estimates of
the APF (−21.2‰) and STF (−18.3‰) [51].
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males that failed to fledge a chick in the sampling year (14.96
± 9.05 µg g−1 dw) compared with those that were successful
(11.53 ± 6.66 µg g−1 dw; binomial GLM: χ2 = 11.30, p < 0.001;
figure 5), but were similar among females that failed
(11.81 ± 7.56 µg g−1 dw) or were successful in fledging their
chick (11.99 ± 6.04 µg g−1 dw; χ2 = 0.31, p = 0.58).

4. Discussion
Feather analyses offer a non-lethal method to obtain infor-
mation about Hg exposure during the non-breeding period,
andmeasuring THg in albatross feathers provides information
about contamination of prey and hence exposure to MeHg in
the foodweb [19,38,52]. This study provides a detailed analysis
of the underlying drivers and consequences of high feather
THg concentrations in the endangered grey-headed albatross
at South Georgia. Results from the present work also provide
new insights into long-term changes in Hg exposure of
this species and differences in exposure among breeding
populations throughout the Southern Ocean.


(a) Temporal trends in mercury exposure (1989–2014)
By comparison with previous ecotoxicological studies at South
Georgia [12,14,39], the present study found a striking threefold
increase in mean body feather THg concentrations of grey-
headed albatrosses since the late-1980s. A similar increase has
been found in other marine predators foraging in subantarctic
waters. For instance, in the southern Indian Ocean, macaroni
penguins (Eudyptes chrysolophus) and gentoo penguins
(Pygoscelis papua) had higher feather THg concentrations in
2007 compared with the 1970s [11], and feather THg concen-
trations from black-browed albatross (Thalassarche melanophris)
at the Falkland Islands have increased since 1986 [53].
Moreover, at Gough Island, Atlantic petrels (Pterodroma
incerta), soft-plumaged petrels (Pterodroma mollis) and sooty
albatrosses (Phoebetria fusca) all had higher feather THg

concentrations in 2009/2010 compared with the mid-1980s
[13]. Similar trends are not observed in lower trophic level
organisms (cephalopod and myctophid species) at South
Georgia [54,55]; however, these samples were collected far to
the south of the subantarctic and subtropical waters used by
the majority of grey-headed albatrosses.


There are two plausible explanations for the temporal
trend observed in our study. Firstly, grey-headed albatrosses
may have shifted their diets or foraging habitats to more con-
taminated prey or regions. Analyses of stomach contents of
chicks have revealed a major dietary shift in breeding grey-
headed albatrosses at South Georgia since the mid-1990s,
including a reduction in the occurrence of the seven-star
flying squid (Martialia hyadesi) and an increase in mackerel
icefish (Champsocephalus gunnari) [34]. However, adults may
not consume the same prey that they provision to chicks
and, given the difficulties in obtaining samples, the only
conventional diet information for grey-headed albatrosses
outside of the breeding period is for the cephalopod
component [56]. Regardless, differences in stable isotope
ratios of grey-headed albatross feathers from 2001 (δ15N,
10.48 ± 0.89‰; δ13C, −19.17 ± 1.12‰) contrast with the
values of 12.71 ± 1.33‰ and −20.09 ± 1.30‰ in our study
and provide support for the dietary shift hypothesis [12].
Moreover, the increased variance in stable isotope ratios
corresponds with the higher standard deviations of THg
concentrations in our study. Secondly, exposure of MeHg to
grey-headed albatrosses at South Georgia may have
increased. Much of the Hg that enters marine food webs
originates from low-oxygen subsurface waters [57,58]. In a
warming world, oxygen minimum zones are expected to
increase, hence potentially enhancing methylation of Hg
and its bioavailability to marine predators. Moreover, artisa-
nal and small-scale gold mining, a major source of Hg
contamination that is prevalent in South America, is increas-
ing [4]. Rivers may deliver large amounts of Hg into the
oceans [59]. Potentially, Hg in rivers flowing onto the Patago-
nian Shelf may be carried south in the Brazil Current and, at
the confluence with the Falklands Current, be transported
east in the South Atlantic Current to grey-headed albatross
foraging areas [33,35,36]. Both hypotheses require further
investigation, including via direct measurements of Hg in
water samples or prey of grey-headed albatrosses.


(b) Comparisons with other populations and albatross
species


Average body feather THg concentrations in grey-headed alba-
trosses from South Georgia, sampled in 2013/2014, were
higher than those reported for this species at either Campbell
or Marion Island [18,39]. Non-breeding birds from these sites
are oceanic foragers that predominantly target subantarctic
waters [60]; however, there is considerable spatial segregation
between the two populations that have been tracked during
the non-breeding period—birds from Marion avoid core
regions in the southwest Atlantic used by birds from South
Georgia [35]. Birds from other Indian Ocean populations are
likely to do the same. Accordingly, birds from all populations
may use broadly the same habitat type, but our results indicate
that the South Georgia population is exposed to higher Hg
levels in the southwest Atlantic, potentially for the reasons
mentioned above. To the best of our knowledge, there are no
published data on Hg contamination for the grey-headed
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Figure 5. Total Hg concentrations (µg g−1 dw) in body feathers of grey-headed albatrosses (T. chrysostoma) that failed to fledge a chick (failed) or successfully
fledged a chick (successful) at Bird Island, South Georgia in the 2013/2014 breeding season. Males (a) and females (b) were analysed separately. Values are means
and standard deviations.
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albatross populations at Crozet, Kerguelen, Macquarie or the
island groups off southern Chile. Phylogeny is a significant
driver of Hg contamination in albatrosses, such that species
in the genus Thalassarche tend to have lower concentrations
than Phoebetria or Diomedea [18]. However, the mean feather
THg concentrations in grey-headed albatrosses reported here
are higher than in light-mantled albatross (Phoebetria palpebrata)
at any site, and even the southern royal albatross (Diomedea
epomophora) and northern royal albatross (D. sanfordi);
indeed, they are the highest recorded for any member of the
Thalassarche genus [18; and references therein].


(c) Factors underlying feather total mercury
concentrations


Foraging habitat, inferred from δ13C values, was an important
driver of body feather THg concentrations. The Southern
Ocean shows a latitudinal decrease in δ13C from subtropical
to Antarctic waters, which is reflected in the tissues of alba-
trosses [51,61,62], and body feather THg concentrations in
albatrosses appear to reflect MeHg intake during growth
[18]. The threshold δ13C values thatwe used to assignmoulting
location to north or south of the APF and STF were derived
from tracked wandering albatrosses in the Indian Ocean [51].
However, the paths of oceanographic fronts can be highly vari-
able between years [63], and stable isotope values are therefore
broadly indicative of water masses rather than latitude per se.
Allowing for some uncertainty, our results are nevertheless
indicative of lower THg concentrations in feathers of grey-
headed albatrosses grown in Antarctic compared with
subantarctic and subtropical waters. A near identical pattern
was found in the light-mantled albatross from the Kerguelen
Islands, sooty albatross from Gough Island and grey-headed
albatross at Marion Island [18]. Moreover, a similar latitudinal
pattern in Hg exposure has been found in a number of
Southern Hemisphere seabird species, of varying trophic
levels, includingwandering albatross at the Crozet archipelago
[26,27], as well as chicks of skuas (Stercorarius spp.) and mul-
tiple penguin species from the southern Indian Ocean [11,64].
Community-level studies have also documented the same
trend with latitude [12,15,65]. A recent review including all
20 albatross taxa breeding in the Southern Ocean found fora-
ging habitat (δ13C) to be an important driver of feather THg

concentrations, with a similar step increase north of the APF
as in our study [18]. Themajority ofMeHg accumulated by sea-
birds is of mesopelagic origin, and recent work suggests that
more efficient Hg methylation at depth, combined with
higher vertical mixing, in subtropical compared with higher
latitude waters could bring newly formed MeHg to the
surface and hence increase bioavailability to seabirds [66].


In our analyses, feather THg concentrations were also
positively related to δ15N values, which provide a proxy for
trophic level. This is reflective of the biomagnification of
MeHg in food webs. The relationship between δ15N and Hg
exposure is often apparent when comparing mean values
for different species within seabird communities [10,15], but
is less frequently observed within a single species [8]. That
it was apparent in our study population is probably because
grey-headed albatrosses at South Georgia consume a wide
range of prey from multiple trophic levels [34], and the vari-
ation in δ15N values among individuals was very high (range:
8.8–15.2‰).


A model also containing sex received less support in
explaining feather THg concentrations; however, males
exhibited higher feather concentrations than females. Male
grey-headed albatrosses at South Georgia are heavier, with
larger wing areas and higher wing loadings than females
[67]. During the non-breeding period, males forage at slightly
higher trophic levels and at higher latitudes compared with
females [36], and tracking data show that core areas but not
overall distributions were segregated to some extent during
the non-breeding summer only [35,37]. No effects of age
were found in the present study, which is in agreement
with results from other albatross species [26–28,39], and pre-
vious studies of grey-headed albatrosses with much smaller
sample sizes [14,39]. However, it should be noted that our
study was cross-sectional, and it is unknown whether Hg
exposure affects adult survival in grey-headed albatrosses.
Hence, selective mortality of particular phenotypes cannot
be excluded except by conducting a longitudinal study [32].
Stable isotope ratios of adult seabird feathers provide
information about foraging ecology in the non-breeding
period [36,60]. However, owing to different integration
periods, it has been suggested that relationships between
stable isotopes and THg concentrations may be spurious
[68]; nonetheless, in albatrosses, both stable isotope ratios
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and THg concentrations appear to reflect diet during feather
synthesis [18; and references therein].


(d) Fitness correlates of mercury exposure
Albatrosses are likely better adapted than other birds to Hg
exposure and may tolerate higher concentrations; regardless,
albatrosses are k-selected species and should prioritize adult
survival over the immediate reproductive event. In our
study, Hg exposure was clearly not sufficient to cause direct
morality, or to prompt birds to defer breeding. At South
Georgia, most reproductive failures occur during incubation,
and consistently successful grey-headed albatrosses arrive
earlier at the colony, have shorter incubation shifts and
hatch larger chicks with higher growth rates compared with
less successful birds [41,69]. No significant relationships
between Hg exposure and arrival date were found; however,
feather THg concentrations of male grey-headed albatrosses
that failed in their breeding attempt were significantly
higher than in those that successfully fledged a chick. Acker-
man et al. [70] converted published Hg toxicity benchmarks
in birds into blood-equivalent THg concentrations and docu-
mented negative effects with those as low as 0.2 µg g−1 wet
weight (ww) [70]. Average feather THg concentrations of
failed male birds in our study were equivalent to a blood
THg equivalent of 1.15 µg g−1 ww.


Generally, health, physiology, behaviour and reproduction
tend to be impacted at blood-equivalent THg concentrations of
approximately 1.0 µg g−1 wwandmore substantial impairments
to health and reproduction at approximately 2.0 µg g−1 ww [70].
Male snowpetrels (Pagodroma nivea) with higherHg burdens are
more likely to neglect eggs, and male black-legged kittiwakes
(Rissa tridactyla) show reduced breeding success and are more
likely to skip breeding (with ≤0.4 µg g−1 ww blood THg
equivalent in both cases) [24,25,70,71]. Hg exposure weakened
immune function in black-footed albatrosses (Phoebastria
nigripes) [72], though the blood-equivalent THg concentrations
were far higher than birds in our study. Although there was no
evidence of fitness consequences of high feather Hg contami-
nation in a previous study of wandering albatrosses at the
Crozet archipelago [26], high blood THg concentrations in the
same population negatively impacted long-term breeding prob-
ability, hatching and fledging probabilities [29]. Grey-headed
albatrosses are declining more steeply at South Georgia than at

any other island group where there is a major population
(approx. 50%); numbers are increasing at Diego Ramirez
and Crozet, broadly stable at the Prince Edward Islands and
declining slowly at Kerguelen [73–75]. However, the differing
population trends could relate to factors other than Hg burdens,
particularly the relative overlap with different fishing fleets and
hencebycatch rates,whichvarygreatly.At SouthGeorgia, breed-
ing success is low, highly variable and has contributed to the
negative population trends over the last 35 years [40]. Our results
suggest that Hg exposure may be a contributing factor. Future
work should examine birds observed as non-breeders at the
colony, andalso examine the risksposedbyother pollutants, par-
ticularly given the increase in recovery rates per capita ofmarine
debris (predominantly plastics) associated with albatrosses at
South Georgia since the mid-1990s, and their potential role in
contaminant transmission [76].
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