
PaCSWG6 Inf  01 

Agenda Item 6.2, 8 

 

Sixth Meeting of the Population and Conservation 

Status Working Group 

Virtual meeting, 24 – 25 August 2021 (UTC+10) 

 

Global political responsibility for the 

conservation of albatrosses and large petrels 

Martin Beal et al.  

 

Attachment: M. Beal, M. P. Dias, R. A. Phillips, S. Oppel, C. Hazin, E. J. Pearmain, J. Adams, 
D. J. Anderson, M. Antolos, J. A. Arata, J. M. Arcos, J. P. Arnould, J. Awkerman, E. Bell, M. Bell, 
M. Carey, R. Carle, T. A. Clay, J. Cleeland, V. Colodro, M. Conners, M. Cruz-Flores, R. Cuthbert, 
K. Delord, L. Deppe, B. J. Dilley, H. Dinis, G. Elliott, F. De Felipe, J. Felis, M. G. Forero, A. 
Freeman, A. Fukuda, J. González-Solís, J. P. Granadeiro, A. Hedd, P. Hodum, J. M. Igual, A. 
Jaeger, T. J. Landers, M. Le Corre, A. Makhado, B. Metzger, T. Militão, W. A. Montevecchi, V. 
Morera-Pujol, L. Navarro-Herrero, D. Nel, D. Nicholls, D. Oro, R. Ouni, K. Ozaki, F. Quintana, R. 
Ramos, T. Reid, J. M. Reyes-González, C. Robertson, G. Robertson, M. S. Romdhane, P. G. 
Ryan, P. Sagar, F. Sato, S. Schoombie, R. P. Scofield, S. A. Shaffer, N. J. Shah, K. L. Stevens, 
C. Surman, R. M. Suryan, A. Takahashi, V. Tatayah, G. Taylor, D. R. Thompson, L. Torres, K. 
Walker, R. Wanless, S. M. Waugh, H. Weimerskirch, T. Yamamoto, Z. Zajkova, L. Zango, P. 
Catry. 2021. Global political responsibility for the conservation of albatrosses and large petrels. 
Science Advances 7: eabd7225 https://doi.org/10.1126/sciadv.abd7225 

 

Attachment: Supplementary material for this article 
http://advances.sciencemag.org/cgi/content/full/7/10/eabd7225/DC1 

 

 

SUMMARY   

Migratory marine species cross political borders and enter the high seas, where the lack of 

an effective global management framework for biodiversity leaves them vulnerable to 

threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on 

breeding population sizes to estimate the relative year-round importance of national 

jurisdictions and high seas areas for 39 species of albatrosses and large petrels. 

Populations from every country made extensive use of the high seas, indicating the stake 

each country has in the management of biodiversity in international waters. We quantified 

the links among national populations of these threatened seabirds and the regional 

fisheries management organizations (RFMOs) which regulate fishing in the high seas. This 

work makes explicit the relative responsibilities that each country and RFMO has for the 

management of shared biodiversity, providing invaluable information for the conservation 

and management of migratory species in the marine realm. 
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Migratory marine species cross political borders and enter the high seas, where the lack of an effective global 
management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 
5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round 
importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations 
from every country made extensive use of the high seas, indicating the stake each country has in the management 
of biodiversity in international waters. We quantified the links among national populations of these threatened 
seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This 
work makes explicit the relative responsibilities that each country and RFMO has for the management of shared 
biodiversity, providing invaluable information for the conservation and management of migratory species in the 
marine realm.


INTRODUCTION
The marine environment is characterized by high connectivity, which 
helps structure ecosystems and has important consequences for 
biodiversity conservation and human welfare (1, 2). Distant waters 
are connected through the migrations of megafauna, including sea 
turtles, pelagic fish, marine mammals, and seabirds, as well as by 
ocean currents which drive the dispersal of fish larvae and other 
planktonic life forms (3–5). In addition to connecting natural 
systems, these processes also connect countries, which depend on 
shared biodiversity elements as resources for consumption, cultural 
identity, and associated ecosystem services but differ in their com-
mitment to sustainable exploitation and conservation (5, 6). During 
their seasonal movements, migratory marine animals visit areas 
under different legal and management regimes, including Exclusive 
Economic Zones (EEZs; up to 200 nautical miles from shore) where 
countries have resource rights, and areas beyond national juris-
diction (hereafter, the “high seas”) that are a global commons. Iden-
tifying the set of national jurisdictions and high seas areas visited by 
species across their seasonal cycles is vital, as strong management 
policy in one region may be nullified by unmitigated threats in 
another (7).


International cooperation and collaboration is key to the conser-
vation of migratory species (8). On a global scale, countries can sign 
and actively engage in multilateral environmental agreements 
(MEAs), such as the Convention on Biological Diversity and the 
Convention on Migratory Species (CMS), and thereby con-
tribute to international conservation by establishing common 
regulatory and guidance frameworks and setting global goals (9). 
Under CMS, there are a number of subsidiary agreements, such as 
the Agreement on the Conservation of Albatrosses and Petrels 
(ACAP), through which countries can share knowledge and pro-
mote policy measures relevant to specific elements of biodiversity 
(10). However, the degree to which these MEAs apply to the high 
seas is debated, as the obligations of signatory countries are re-
stricted to areas and vessels under their jurisdiction (11). The 
primary global legal framework for maritime activities, the United 
Nations Convention on the Law of the Sea (UNCLOS), calls on 
countries to cooperate to preserve the marine environment both 
within national jurisdictions and in the high seas. However, explicit 
processes for enacting conservation and management measures for 
biodiversity in the high seas are lacking under UNCLOS, leaving a 
gap in legal responsibility (12).


Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).


 on M
arch 3, 2021


http://advances.sciencem
ag.org/


D
ow


nloaded from
 



http://advances.sciencemag.org/





Beal et al., Sci. Adv. 2021; 7 : eabd7225     3 March 2021


S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E


2 of 12


The high seas have been documented as important habitat for an 
increasing number of migratory marine megafauna, yet, regardless, 
the footprint of human activities in the high seas continues to grow 
(13, 14). Governance in the high seas is currently fragmented among 
institutional arrangements with sector-specific and/or regional 
mandates (12). The International Maritime Organization regulates 
shipping, for example, while regional fisheries management organi-
zations (RFMOs) have mandates to regulate fishing. Fishing represents 
one of the largest industries operating in the high seas (15), and despite 
the formal commitment of RFMOs to ensure sustainable harvests 
and minimize broader ecosystem impacts, fisheries continue to rep-
resent a profound threat to high seas biodiversity (16).


To address the existing governance gap in the high seas, the 
United Nations have agreed to develop an international legally binding 
instrument under UNCLOS on the conservation and sustainable 
use of marine biological diversity of areas beyond national jurisdiction 
(aka “BBNJ treaty”). Core to the BBNJ treaty are provisions for pro-
tecting biodiversity through area-based management tools [e.g., 
marine protected areas (MPAs)] and the biodiversity-inclusive 
management of the wider ocean space, such as through the imple-
mentation of strategic environmental assessments and environ-
mental impact assessments for planned activities (11, 17). However, 
it remains unclear how existing management organizations and 


bodies will interact with the future processes adopted under the BBNJ 
treaty (18). For countries to be able to negotiate for, and ultimately 
implement, effective conservation and management measures un-
der the new treaty and within the existing frameworks of MEAs and 
RFMOs, information is needed on the ways in which migratory spe-
cies depend on and connect national jurisdictions and the high seas.


Tracking data from animals fitted with electronic devices have been 
used previously to estimate the proportion of time spent in different 
national jurisdictions and high seas areas and hence their relative 
importance to megafauna such as seabirds, sea turtles, tuna, sharks, 
and marine mammals (13, 19–21). Tracking data can be integrated 
with population sizes to better quantify the importance of areas at 
sea, as sample-derived patterns can be contextualized with respect 
to the large-scale or regional distribution of each species (22, 23). 
Population estimates are unreliable for many marine megafauna 
species because of their low detectability and wide distributions; yet, 
for seabirds, which assemble at predictable sites on land to breed, 
reasonably accurate estimations of population size can be used to 
weight estimates of space use at sea (24).


Albatrosses and large petrels have wide annual ranges spanning 
all major ocean basins. They are considered among the most threatened 
of all bird groups and are subject to several anthropogenic threats at 
sea, especially incidental mortality in fishing gear (termed “bycatch”) 
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and competition with fisheries caused by overfishing, as well as pol-
lution and climate-related changes to ecosystems (25, 26). Using a 
unique tracking dataset assembled from across the global distribu-
tions of 39 species of albatrosses and large petrels, we estimate the 
importance of national jurisdictions and high seas areas across the 
annual cycle. First, we calculate species richness for each national 
jurisdiction (including the dependent territories under each sover-
eign country) and the high seas as a whole, distinguishing between 
breeding and visiting species (i.e., breeding in another country). 
Next, we estimate the amount of time, year-round, that each breed-
ing population spends in each of these political areas, again discrim-
inating between time spent in breeding-origin countries and other 
visited areas. Then, we attribute annual time spent in the high seas 
to the areas of competence of RFMOs. Last, we construct networks 
to reveal the geopolitical connections most important to the popu-
lations of each breeding-origin country and to the global community 
of albatrosses and large petrels. These detailed quantitative estimates 
of interconnectivity will inform countries on which jurisdictions 
their biodiversity depends and how to prioritize their engagement 
with the BBNJ treaty and other instruments and agreements.


RESULTS
Standalone importance of countries and the high seas
All 39 species of albatrosses and large petrels visited the high seas 
during their annual cycles, and except for the shy albatross Thalassarche 
cauta, all species visited the areas of jurisdiction of at least one country 
outside their breeding origin (Table 1, Fig. 1, and data S1). France 
had the highest total species richness (n = 28) and visiting-species 
richness (n = 26), while Argentina and Brazil had the highest num-
ber of species visiting that do not also breed in areas under their 
jurisdiction (n = 23 and n = 19, respectively; Fig. 1A). New Zealand 
had the highest number of breeding species (n = 15), and the United 
Kingdom had the highest richness of species that both breed in areas 
under their jurisdiction and visit from elsewhere (n = 10; Fig. 1B 
and data S1). In general, countries hosting a high diversity of breeding 
species also hosted a high number of visiting species, and countries 
with larger territories had higher richness (Fig. 1B and fig. S4). Brazil, 
Uruguay, Namibia, and Peru were each visited by ≥10 species although 
they have no breeding populations, and Antarctica (areas south of 
60°S) was visited by 20 species (Fig. 1A and data file S1).


These species richness values were estimated directly from avail-
able tracking data; for several species, the sampled sites are not 
comprehensive of all breeding sites, and therefore, reported rich-
ness values are underestimates for certain countries. Breeding richness 
estimated from the tracking data was on average one species (mean, 
SD ±1.4) fewer than true breeding richness as calculated from the 
literature. Estimated richness was equal to true richness for 9 of the 
22 countries that are known to have at least one breeding species of 
albatross or large petrel (data file S1). In most cases, missed breeding 
populations are relatively small in global terms, because our data includ-
ed most of the global breeding population of each species (Table 1).


The high seas as a whole hosted the greatest amount of time spent 
by albatrosses and large petrels across the year, including 16 million 
of the total 41.3 million (39%) estimated bird-years (Fig. 1C). Among 
national jurisdictions, Australia had the highest annual time spent 
(i.e., by both visiting and breeding birds), with 4.0 million (9.6%) 
bird-years. Russia and the United States hosted the most time spent 
by visiting birds, representing an annual 3.9 million (9.4%) and 


2.7 million (6.5%) bird-years, respectively (Fig. 1C and data S1). 
Australia and New Zealand each hosted the highest annual time 
spent by their own breeding populations, with a respective 3.9 million 
(9.4%) and 2.9 million (7.0%) bird-years (Fig. 1C and data S1). Static 
maps of annual species richness and time spent revealed contrasting 
patterns of albatross and large petrel diversity across the world 
(Fig. 2). The spatial pattern of time spent per month varied within a 
year, reflecting the dynamic seasonal distributions of albatrosses 
and large petrels (movie S1).


Geopolitical connectivity
In terms of annual time spent, the high seas as a whole represent a 
“top connection” (i.e., one of the top five most visited areas) for the 
albatross and large petrel communities of all breeding-origin coun-
tries (Fig. 3A). At the global level, the breeding communities of the 
United Kingdom, France, and New Zealand have the strongest links 
to the high seas, indicated by the time spent there by the large breeding 
populations in these countries (i.e., proportions of all adult birds of 
each species), as well as the number of species making the connec-
tion. South Africa and Brazil were top connections for four separate 
breeding-origin countries (South Africa: France, Portugal, Spain, and 
United Kingdom; Brazil: Argentina, Cabo Verde, Portugal, and United 
Kingdom), and France, Peru, Mauritania, Russia, and the United 
States were among the top connections for populations breeding in 
three different countries (Fig. 3A and data S2A).


All high seas areas under the legal competence of RFMOs hosted 
a top connection (i.e., one of the top three most visited areas) with at 
least one breeding-origin country, with the exception of the smallest 
RFMOs (the North Atlantic Fisheries Organization and the Conven-
tion on the Conservation and Management of Pollock Resources in 
the Central Bering Sea; Fig. 3B). The International Commission for 
the Conservation of Atlantic Tunas (ICCAT), the Western and Cen-
tral Pacific Fisheries Commission (WCPFC), and the South Pacific 
Regional Fisheries Management Organisation (SPRFMO) represent-
ed the most important high seas areas, in terms of the number of top 
connections with breeding-origin countries and the strength of con-
nection (Fig.  3B and data S2B). The competence areas of ICCAT, 
WCPFC, and SPRFMO are among the largest in the world, and the 
size of RFMO areas was positively related to the total strength of their 
connections with breeding-origin countries (i.e., the sum of all con-
nections per RFMO; Fig. 3B; R2 = 0.6, P < 0.001, df = 12; fig. S4).


DISCUSSION
Migratory species cover immense distances on their seasonal move-
ments, connecting numerous areas both within and beyond national 
jurisdiction and making their conservation a challenging task. By 
analyzing a comprehensive tracking dataset and accounting for the 
size of each breeding population relative to the global total, our study 
provides the first global estimation of the relative importance of po-
litical areas to a group of highly threatened migratory megafauna, 
the albatrosses and large petrels. We estimated the standalone 
importance of national jurisdictions and the connectivity between 
them, providing a potential road map for international collaboration. 
We also quantified the connections between breeding-origin countries 
and areas of legal competence of RFMOs in the high seas, providing 
a useful scoping tool for identifying which national populations of 
albatrosses and large petrels may be affected by management decisions 
in international fisheries. Our results showed that the high seas are 


 on M
arch 3, 2021


http://advances.sciencem
ag.org/


D
ow


nloaded from
 



http://advances.sciencemag.org/





Beal et al., Sci. Adv. 2021; 7 : eabd7225     3 March 2021


S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E


4 of 12


Table 1. Tracking data coverage of the global breeding population and annual cycle of 39 species of albatrosses and large petrels. “Nspecies” is the 
estimated size (individuals) of the global breeding population. “nsites” is the number of breeding populations tracked per species. “nbirds” is the number of unique 
birds tracked. “% Species pop.” is the percentage of the global breeding population made up by the sites tracked herein. “% Species year known” is the 
percentage of the annual cycle of the global breeding population estimated by our tracking data. “% Species year unknown” is the percentage of the annual 
cycle not estimated by our tracking data (i.e., months or populations without tracking data). 


Common name Scientific name Nspecies nsites nbirds % Species pop. % Species year 
known


% Species year 
unknown


Amsterdam 
albatross


Diomedea 
amsterdamensis 90 1 74 100 100 0


Antipodean 
albatross


Diomedea 
antipodensis 14,864 2 211 100 100 0


Tristan albatross Diomedea 
dabbenena 2,218 1 52 100 100 0


Wandering 
albatross Diomedea exulans 18,568 5 977 100 100 0


Northern royal 
albatross Diomedea sanfordi 10,270 2 75 100 92 8


Short-tailed 
albatross


Phoebastria 
albatrus 2,600 1 32 78 52 48


Laysan albatross Phoebastria 
immutabilis 1,333,316 1 208 100 100 0


Waved albatross Phoebastria 
irrorata 16,942 1 54 100 42 58


Black-footed 
albatross


Phoebastria 
nigripes 140,072 1 160 96 96 4


Sooty albatross Phoebetria fusca 24,192 4 121 100 100 0


Light-mantled 
albatross


Phoebetria 
palpebrata 41,046 5 73 65 58 42


Buller’s albatross Thalassarche 
bulleri 65,402 1 115 44 44 56


Indian yellow-
nosed albatross


Thalassarche 
carteri 64,414 2 184 87 63 37


Shy albatross Thalassarche 
cauta 29,368 1 143 100 83 17


Atlantic yellow-
nosed albatross


Thalassarche 
chlororhynchos 67,300 1 45 100 92 8


Gray-headed 
albatross


Thalassarche 
chrysostoma 165,854 5 232 85 57 43


Chatham albatross Thalassarche 
eremita 10,592 1 50 100 92 8


Campbell albatross Thalassarche 
impavida 43,296 1 81 100 92 8


Black-browed 
albatross


Thalassarche 
melanophris 1,374,890 5 803 88 86 14


Salvin’s albatross Thalassarche 
salvini 82,426 1 22 3 3 97


White-capped 
albatross


Thalassarche 
steadi 191,834 1 38 100 100 0


Buller’s shearwater Ardenna bulleri 700,000 1 8 100 100 0


Flesh-footed 
shearwater Ardenna carneipes 148,000 2 91 48 41 59


Pink-footed 
shearwater Ardenna creatopus 67,040 1 102 100 92 8


Great shearwater Ardenna gravis 5,000,000 1 72 100 100 0


Sooty shearwater Ardenna grisea 20,000,000 2 54 46 45 55


Wedge-tailed 
shearwater Ardenna pacifica 5,200,000 4 56 58 49 51


continued on next page
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Common name Scientific name Nspecies nsites nbirds % Species pop. % Species year 
known


% Species year 
unknown


Short-tailed 
shearwater


Ardenna 
tenuirostris 23,000,000 1 16 78 72 28


Cory’s shearwater Calonectris 
borealis 423,672 4 514 98 90 10


Scopoli’s 
shearwater


Calonectris 
diomedea 327,250 4 228 95 80 20


Cape Verde 
shearwater


Calonectris 
edwardsii 26,228 1 19 100 83 17


Streaked 
shearwater


Calonectris 
leucomelas 3,000,000 2 104 59 54 46


Southern giant 
petrel


Macronectes 
giganteus 95,406 5 243 25 19 81


Northern giant 
petrel Macronectes halli 21,382 5 227 81 59 41


White-chinned 
petrel


Procellaria 
aequinoctialis 2,405,136 4 133 80 68 32


Gray petrel Procellaria cinerea 151,132 4 61 98 89 11


Spectacled petrel Procellaria 
conspicillata 28,800 1 8 100 50 50


Black petrel Procellaria 
parkinsoni 3,000 1 61 100 92 8


Westland petrel Procellaria 
westlandica 5,654 1 28 100 92 8


64,302,254 87 5775 84.9 75.0 25.0
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Fig. 1. Standalone importance of countries and the high seas for albatrosses and large petrels. (A and B) Species richness within national jurisdictions and the high 
seas. For each political area, richness is divided into three categories: species that breed in the country (“Breeding”), species that visit the area but do not breed (“Visiting”), 
and species that both breed locally and visit from elsewhere (“Both”). (A) Top 15 areas in terms of total species richness. (B) Species richness of countries that host breed-
ing populations, ordered by breeding richness. (C) Most important areas in terms of annual time spent, an index of abundance, by adult albatrosses and large petrels split 
into visiting and breeding bird components. Areas shown host more than 0.1% of annual time spent, with all others summed into the category “Other.” National jurisdic-
tions refer to the aggregated EEZs (up to 200 nautical miles from shore) of each country, and high seas refers to all areas beyond national jurisdiction.
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important to albatrosses and large petrels from every country and in 
every ocean basin, indicating that effective management of interna-
tional waters is of common, global interest.


By identifying the specific set of countries visited by albatrosses and 
large petrels originating in different countries, our findings provide 
support for existing bilateral and multilateral agreements and reveal 
additional connections of importance for these species. Our network 
confirms the connections, in terms of their albatross and petrel popula-
tions, among signatories of the CMS daughter agreement ACAP 
(which lists 29 of the 39 species studied herein) (10) and shows that 
bilateral agreements, such as the Japan-Australia Migratory Bird Agree-
ment (http://www.austlii.edu.au/au/other/dfat/treaties/1981/6.html) or 


the New Zealand–Chile arrangement to protect seabirds (https://www.
doc.govt.nz/news/media-releases/2018/chile-and-nz-arrangement-to-
protect-seabirds/) including those affected by fisheries, have measur-
able importance. However, our results also reveal important gaps; for 
example, many birds from both Australia and Japan use Russian wa-
ters, yet there are no treaties or agreements between these countries that 
reflect this relationship. South Africa and Brazil host large numbers of 
birds from breeding populations across the Atlantic Ocean, and despite 
the engagement of these countries in CMS instruments, the most 
numerous species (i.e., Calonectris and Ardenna shearwaters) that con-
tribute to these connections are not listed in CMS appendices and are 
therefore at risk of being omitted from international policy develop-
ments concerning migratory marine animals. To minimize gaps in 
protection, we suggest that any international conservation efforts for 
albatrosses and large petrels would benefit by considering the relative 
importance of countries for these species as identified herein.


Our maps of species richness and annual time spent reveal con-
trasting patterns in these two measures of biodiversity and identify 
hotspots both within and beyond national jurisdictions. Areas of high 
species richness were concentrated in the Southern Ocean, whereas 
areas of high annual time spent were generally distributed in the 
productive waters of continental shelf or upwelling regions, like the 
Patagonian Shelf in the South Atlantic Ocean and the Kuril Trench 
in the North Pacific Ocean. Notably, some areas of high annual time 
spent occurred in specific regions in the high seas, such as the 
Southern Ocean south of Tasmania, the northwest Pacific Ocean, 
and north-central Atlantic Ocean. The identified hotspots largely 
reflect the distributions of several species that are highly abundant 
trans-equatorial migrants, which number in the millions in the 
Atlantic (great shearwater Ardenna gravis) and Pacific Oceans (sooty 
Ardenna grisea and short-tailed shearwaters Ardenna tenuirostris). 
Our synthesis provides global snapshots of albatross and large petrel 
diversity, which have markedly seasonal distributions (see supple-
mentary animation). The extensive and dynamic ranges of migratory 
marine megafauna, such as albatrosses and large petrels, indicate 
that static, area-based conservation measures alone, like MPAs, are 
not sufficient to address threats (27, 28). Very large MPAs or those 
with dynamic management, with boundaries that shift across space 
and time, can be effective during the breeding season for certain 
species (29). However, during the nonbreeding season, when the 
movements of seabirds are less restricted, process-oriented and eco-
system-based management across the wider seascape is required 
(27). Regardless of the spatiotemporal scale of the approach, for any 
at-sea area-based protection to have positive outcomes for albatross 
and large petrel conservation, the implementation of effective fisheries 
measures is vital.


The high seas constitute the most important at-sea area for alba-
trosses and large petrels globally. Our estimates provide countries 
with tangible, quantitative indicators of the relative importance of 
the high seas for their respective communities of breeding seabirds, 
which are highly pertinent for countries involved in the ongoing dis-
cussions on the BBNJ treaty. The treaty objective is the conservation 
and sustainable use of high seas biodiversity; however, on the basis 
of the precondition of “not undermining” preexisting management 
organizations and bodies, fisheries have been excluded from treaty 
discussions (18). As the major, immediate at-sea threats to albatrosses 
and large petrels relate largely to fisheries (25), this exclusion may 
represent a missed opportunity to improve fisheries governance. 
Nevertheless, the BBNJ treaty could still influence RFMOs to the 


Fig. 2. Tracking data and year-round distributions of albatrosses and large 
petrels. (A) Study sites (open red circles) and the number of daily positions derived 
from tracked birds. (B) Species richness of adult birds in a breeding year. (C) Time 
spent during a breeding year. Cells indicate the total amount of time spent by the 
global breeding population of albatrosses and large petrels in a year. Gray lines at 
sea represent borders of national EEZs.


 on M
arch 3, 2021


http://advances.sciencem
ag.org/


D
ow


nloaded from
 



http://advances.sciencemag.org/





Beal et al., Sci. Adv. 2021; 7 : eabd7225     3 March 2021


S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E


7 of 12


benefit of albatrosses and large petrels (18) in a number of ways—
by formalizing a global process for establishing area-based manage-
ment tools with appropriate regulations regarding bycatch and 
overfishing, by improving transparency and information sharing 
(particularly related to bycatch) via the establishment of an inde-
pendent scientific committee, and by setting specific thresholds of 
impact that trigger the need for fisheries (or any other industry) to 
implement environmental impact assessments (18, 30).


Our results also provide information to breeding-origin countries 
about the RFMO management areas in the high seas that are most 
important to each of their seabird populations. Despite being important 


because of their ocean-basin scale, the tuna RFMOs [ICCAT, WCPFC, 
Indian Ocean Tuna Commission (IOTC), and Inter-American 
Tropical Tuna Commission (IATTC)] are particularly relevant to 
albatross and large petrel conservation as industry practices have 
frequently been linked with overfishing and high bycatch rates (16, 31). 
Fishing fleets operating in the high seas are under the jurisdiction of 
their flag states (32); therefore, despite not hosting albatrosses and 
large petrels within their national jurisdictions, some countries still 
affect them through poor fishing practices (33). The effectiveness of 
regulatory measures ultimately depends on the attitude of each country 
in terms of implementation and monitoring of compliance; however, 
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Fig. 3. The most important geopolitical connections for albatrosses and large petrels. Connections are between breeding-origin countries (yellow dots) and visited 
national jurisdictions or high seas areas (purple dots), with dot size respectively representing the breeding and visiting richness in each and the link width signifying the 
strength of the connection. Connection strength is quantified as the percentage of annual time spent in the visited area, summed across the species making the connection. 
Annual time spent is calculated for each breeding population and weighted by the size of the population relative to global total of each species. (A) Top five connections 
between each breeding-origin country and the other areas visited throughout the annual cycle. (B) Top three connections between breeding-origin countries and the 
areas of competence of RFMOs in the high seas. Colored boxes represent the ocean basin in which most of the jurisdictional waters of each country or RFMO are located. 
RFMO abbreviations correspond to the following (left to right): Indian Ocean Tuna Commission, Southern Indian Ocean Fisheries Agreement, South Pacific Regional Fisheries 
Management Organisation, Western and Central Pacific Fisheries Commission, Convention on the Conservation and Management of Pollock Resources in the Central Bering 
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as RFMOs operate on a consensus basis, it is the countries with a 
will to protect nontarget biodiversity that must push for effective 
regulation. Our results confirm that national measures for alba-
trosses and large petrels if coupled with coordinated, international 
efforts would successfully mitigate threats occurring across the 
ranges of these species. For example, while many species of conser-
vation concern breeding on South African, French, United Kingdom, 
and Australian islands benefit from national action plans for reduc-
ing bycatch within national waters and fleets (34), birds are still at 
risk from longline effort in the high seas of the Indian Ocean, where 
they spend a considerable part of the year (Fig. 3B). Despite this, 
these countries have not advocated for the improvement of bycatch 
mitigation measures at the IOTC since 2012.


The tracking dataset used herein spanned the global ranges and 
annual cycles for most of our focal group, the albatrosses and large 
petrels, providing a uniquely representative picture of their global 
distribution (mean coverage of 85 and 75%, respectively; Table 1). 
Nevertheless, gaps remain in terms of untracked populations and 
unsampled months of the year. Using knowledge of known breeding 
sites and population sizes, we quantified these sampling limitations 
(Table 1) and thereby identified gaps at the species level where future 
work may be focused (35, 36). Tracking and population data were 
only analyzed for breeding adults, and therefore, our results pertain 
to the global breeding populations of each species in a given year. A 
substantial proportion of the global population is made up of juveniles, 
immatures, and deferring breeders (particularly for biennial species), 
which may have different annual distributions and hence geopolitical 
connectivity (37, 38). These are important gaps to fill in terms of 
tracking and monitoring effort; however, as these data accumulate, 
syntheses across ranges, taxonomic groups, and life stages can be-
come standard practice (24).


Here, we stress that, when possible, population delineations and 
size estimates should be incorporated when identifying areas that 
are important for migratory species (23, 39) or subject to particular 
threats (40, 41). Our results show how such analyses can quantify 
political responsibility and reveal unexpected linkages, providing 
opportunities for improving the conservation of migratory species. 
The high seas are a global commons, where there is a lack of effective 
legal processes for ensuring the conservation and sustainable use of 
biodiversity. We show that migratory seabirds across the world connect 
numerous countries and the high seas, thereby contributing to the 
connectivity of the global ocean. As human endeavor in the marine 
environment expands, it becomes more important than ever that our 
systems of management and protection reflect this interconnected reality.


MATERIALS AND METHODS
Study taxa
For the purposes of this study, the term “albatrosses and large pe-
trels” refers to all species in the albatross family Diomedeidae, and 
the genera Macronectes, Ardenna, Calonectris, and Procellaria of the 
family Procellariidae. This grouping was selected for the following 
reasons: 21 of these 40 species are listed as vulnerable, endangered, 
or critically endangered under the International Union for Conser-
vation of Nature (IUCN) Red List Criteria and an additional 11 as 
near threatened (42); 29 are listed by ACAP (10), a high proportion 
face at-sea threats, namely incidental mortality in association with 
fishing, as well as direct competition with fisheries; last, these spe-
cies are highly mobile and are relatively well studied across their 


ranges, and hence, the necessary tracking and population data are 
available for a global synthesis (10, 24, 25).


Data assembly
Tracking data were obtained from the BirdLife International Seabird 
Tracking Database (www.seabirdtracking.org) and directly from 
collaborators. Data were sought from all the breeding aggregations 
for each species, with the goal of maximizing coverage of the global 
breeding population (Table 1 and data S3). Each “breeding popu-
lation” was defined according to criteria adopted by ACAP as 
individuals of each species found breeding at each “island group”; 
the latter correspond with major archipelagos and reflects current 
biogeographic and political separation (10). For each breeding popu-
lation with tracking data, we maximized coverage of the annual cycle 
(Table 1) by using data from light-level geolocation (Global Location 
Sensor or GLS), Platform Terminal Transmitters (PTTs), and Global 
Positioning System (GPS) devices. We obtained island group and 
global breeding population size estimates from the ACAP database 
(https://data.acap.aq/) and from the literature (data S4). We assem-
bled requisite data for 39 of the 40 species of albatrosses and large 
petrels, with only the southern royal albatross Diomedea epomophora 
lacking the necessary data for analysis.


Filtering and standardization
Because time intervals between locations differed among device types 
and datasets, we used a single location per day (i.e., the lowest com-
mon interval) from each individual track, nearest to local noon, for 
analysis. GLS, PTT, and GPS devices provide positions in different 
ways, resulting in different levels of spatial accuracy. Data from GLS 
devices are used to estimate location based on day length and the 
relative timing of local noon and have the highest spatial error, of 
around SD ±186 km (43). We applied a series of filters to GLS datasets 
in addition to those used by data contributors. We also performed a 
resampling procedure to test the sensitivity of our measures of the 
importance of political areas to spatial error and concluded that the 
effects on estimated richness and time spent were very small and 
had no substantial effects on the results (see Supplementary Materials 
and Methods for details and fig. S3 for results). Nine species (all 
Diomedea and Phoebetria spp. and gray-headed albatross Thalassarche 
chrysostoma) breed biennially, and because tracking data coverage 
during the nonbreeding year is generally poor, we retained only data 
from the first 365 days following logger attachment for each indi-
vidual track. Hence, all results pertain to the distribution of adult 
birds during a breeding year.


After filtering, there were a total of 842,527 tracking days avail-
able for analysis from 5775 individual birds (Fig. 2A, fig. S1, and 
data S4). These data represent movements sampled between 1989 
and 2017, across 87 breeding populations from 39 of the 40 species 
of albatrosses and large petrels (Table 1 and data S3). These popula-
tions represent a total of 44 million of the estimated 58 million breeding 
albatrosses and large petrels worldwide and a mean of 85% (range, 
3 to 100%) of the global breeding population per species (Table 1). 
We identified the national jurisdictions and high seas areas visited 
by each breeding population for each month of the year (see the 
“Analysis” section); we considered months with fewer than 10 
unique tracking days to be unrepresentative and removed them 
from the analysis. To test the sensitivity of this threshold, we reran 
the analysis with a more conservative threshold of at least 10 track-
ing days across five different individuals. This did not alter any 
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major patterns or conclusions but excluded valuable data for sever-
al important populations from which few birds have been tracked; 
therefore, we opted to use the less conservative threshold (see data 
S5, A and B, and S6, A and B). Combined tracking samples for each 
population spanned a mean of 300 days (SD ±56) of the annual 
cycle (Table 1). After filtering unrepresentative months, tracking data 
allowed for the calculation of the national jurisdictions and high seas 
areas visited during a total of 94% of the annual cycle of 44 million 
albatrosses and large petrels and a mean of 76% (range, 3 to 100%) 
of the annual cycle per species (Table 1). Therefore, our results per-
tain to 41.3 million of a possible total of 58 million (71%) bird-years.


Analysis
Each daily location estimate was assigned to a maritime zone (herein 
used when simultaneously referring to the following areas: EEZs, 
the high seas as a whole, and the areas of legal competence of 
RFMOs in the high seas). First, this was done for national jurisdictions 
and the high seas as a whole, using a spatial union between country 
land borders and EEZs (VLIZ 2020, available at http://marineregions.
org). We considered national jurisdictions to be the aggregated area 
of EEZs (and territorial waters) under a single country, including 
therein any overseas dependencies. Then, the analysis was run again, 
attributing points in the high seas to the areas of competence of the 
RFMOs, available at http://fao.org/geonetwork/ (fig. S2). Areas with 
overlapping territorial claims were left named with all claimant 
countries listed (e.g., “disputed – Russia/Japan”), unless they had 
breeding colonies with tracking data, which was only the case for the 
Falklands/Malvinas, South Georgia/Georgias del Sur, and the 
Chafarinas/Zafarin Islands. For these cases, the analysis was run twice 
with breeding populations alternately assigned to each disputing 
country (see alternate results in data S5, C and D, and S6, C and D).
Species richness
Species richness was calculated for each national jurisdiction and the 
high seas as a whole based on tracking data occurrence and reflects 
the number of (i) breeding species, (ii) visiting species, and (iii) spe-
cies that both breed locally and visit from elsewhere. To visualize 
this pattern in space, maps were constructed by binning total rich-
ness on a global hexagonal grid of with cell-center spacing of 495 km 
(SD ±30) which is a grid resolution large enough to encompass the 
average error of GLS devices (43). Calculations of breeding species 
richness for each country reflect only the breeding populations with 
available tracking data to ensure a valid comparison with the num-
ber of visiting species; therefore, this will be an underestimate of true 
breeding richness in certain cases. Using information on all known 
breeding countries for each species, we calculated the degree of un-
derestimation in our calculations of breeding richness per country.
Time spent estimation
To reflect the relative abundances of albatrosses and large petrels in 
each maritime zone, we estimated the amount of time spent by each 
breeding population in a year. Time spent was first calculated for 
each month to account for uneven sample sizes and shifting seasonal 
distributions and then summed and expressed in “bird-years.” Each 
daily location within a maritime zone was considered one bird-day 
spent therein. The total amount of time spent (Tspme; in bird-
months) by the breeding population p of species s in maritime zone 
e was calculated as


	​​ T​ spme​​  = ​  
​∑ i=1​ ​i​ max​​ ​​​(​​ ​​D​ ime​​ _ ​D​ im​​ ​​)​​ 


 ─ ​n​ m​​  ​ * ​N​ p​​​	 (1)


where Dime represents the number of days an individual i spent in 
maritime zone e in month m, and Dim represents the total number 
of days individual i was tracked in month m. This proportion of 
days spent in each maritime zone was then averaged across all 
tracked individuals (i1 to imax) by dividing the sum of proportions by 
the number of tracked individuals for a species and population nm in 
month m. The average proportion of monthly time spent per tracked 
individual was then multiplied by the breeding population size Np to 
extrapolate to the total amount of time (in bird-months) that breed-
ing population p of species s spends in maritime zone e in month m.


For example, an individual (i) Cory’s shearwater Calonectris borealis 
(s) from the breeding population in Madeira (p) spent 10 of a total 
of 31 tracking days (32% of the time) in the high seas ​​​(​​ ​​D​ ime​​ _ ​D​ im​​ ​​)​​ ​​during 
January (m). In this way, we calculated the proportion of days spent 
in the high seas for each of the 72 tracked individuals (nm) of the 
same species and population. Next, we calculated the mean propor-
tion of time spent across these 72 individuals, estimating that these 
birds spent, on average, 17% of January in the high seas. Multiply-
ing this mean proportion by the breeding population size of 66,080 
individuals (Np) results in a monthly total of 11,284 bird-months 
spent in the high seas in January (Tspme).
Annual time spent
We then summarized the monthly time spent across all months to 
estimate the standalone importance of maritime zones e in terms of 
the total amount of time spent in a year (Te; in bird-years) by the 
global community of albatrosses and large petrels


	​​ T​ e​​  = ​  ∑ 
p=1


​ 
​p​ max​​


​​ ​ 
​∑ m=1​ ​m​ max​​ ​​(​T​ spme​​) ─ 12  ​​	 (2)


where the total time spent within each month (Tspme) was summed 
across the months for which tracking data were available (mmax) 
and divided by 12 to convert the unit from bird-months to bird-
years. The number of bird-years per population was then summed 
across all populations in maritime zone e to give an estimate of the 
total annual time spent there by all species.


Continuing our example of Cory’s shearwaters from Madeira, the 
total monthly time spent in the high seas (Tspme) was calculated for 
the 11 months of the year where tracking data existed (m1 to mmax) 
and then divided by the full 12 months of the year to convert the 
unit from bird-months to bird-years. To put this species- and 
population-specific pattern in the global context, we added the re-
sulting total amount of time spent by Cory’s shearwaters to the values 
of all other breeding populations visiting the high seas (p1 to pmax), 
giving the total amount of time spent in the high seas in a year by 
the global community of albatrosses and large petrels (Te).


Since tracking data were unavailable for some months of the 
year for certain populations, Te was underestimated in these cases 
because the unit conversion still divided the sum of all tracking 
months by 12 rather than the number of months for which tracking 
data were available; however, we preferred this conservative approach 
because calculating over the full year avoided extrapolating occur-
rence patterns into unsampled periods. The sum of Te across all 
maritime zones therefore equals the population size of all breeding 
populations with tracking data minus the untracked portions of the 
year for each population (i.e., 41.3 million bird-years estimated for 
44 million birds; see the “Filtering and standardization” section). To 
visualize the time spent pattern in space, we aggregated the annual 
time spent over a hexagonal grid with cell-center spacing of 495 km 
(SD ±30) using the same equation (i.e., where e signified grid cells).
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Network analysis
To estimate the strength of connection between breeding-origin 
countries and other visited maritime zones, we developed an index 
based on the percentage of annual time spent per maritime zone by 
populations of different breeding origins. The proportion of annual 
time spent Gsoe in maritime zone e by species s breeding under the 
jurisdiction of origin country o was calculated as


	​​ G​ soe​​  = ​  
​∑ p=1​ x  ​​​∑ m=1​ ​m​ max​​ ​​(​T​ spme​​)  ─────────── ​N​ s​​ * 12  ​​	 (3)


where the total within-month time spent (Tspme) was summed across 
all months and all tracked populations x of a given species breeding 
in country o and converted from bird-months to bird-years by 
dividing by 12. This annual time spent value was then divided by 
the global population size Ns of that species to calculate the propor-
tion of annual time spent in each maritime zone by all individuals of 
said species.


In our example of Cory’s shearwaters from Madeira, we first added 
the total amount of time spent in the high seas in each month (Tspme) 
across all tracking months of the year, resulting in 115,844 bird-months. 
Similarly, we calculated 1,988,600 bird-months spent in the high seas 
across the year for Cory’s shearwaters from the Azores and 4771 
bird-months for the Berlengas population, which resulted in a total 
of 2,109,215 bird-months or 175,768 bird-years for all breeding popula-
tions of Cory’s shearwater falling under the jurisdiction of Portugal. We 
then divided the latter value by the global population size of 423,672 indi-
viduals of that species to estimate that the proportion of time spent (Gsoe) 
in the high seas (e) attributable to Cory’s shearwaters (s) of Portuguese 
breeding origin (o) was 41.5% of the annual time for the species.


Then, the strength of connection between each breeding-origin 
country and visited maritime zones was calculated as the percentage 
of annual time spent in each zone summed across all the species 
breeding in each country


	​​ G​ oe​​  = ​  ∑ 
s=1


​ 
​s​ max​​


​​ ​G​ soe​​ * 100​	 (4)


where Goe indicates the strength of the connection between breeding-
origin country o and visited maritime zone e with respect to the global 
breeding population for each species and to the breeding community 
in each country. The connections were ranked by strength (Goe), and 
the strongest links were then plotted in a network diagram. We repre-
sented the top connections per breeding-origin country in the network 
as (i) the top five links in the country-to-country and the high seas 
analysis and (ii) the top three links in the country-to-RFMO competence 
area analysis (see tables S6 and S8 for the full set of connections). A 
virtual application is available at https://birdlifeseabirds.shinyapps.
io/seabird-connections/ to facilitate viewing the specific connections 
albatrosses and large petrels create between different national juris-
dictions and high seas areas, including RFMOs. All analyses were run 
using the R statistical computing environment; maps were made 
using the R packages “dggridR,” “ggplot2,” and “sf,” and networks 
were constructed using “ggraph” (44–48). Analysis scripts are avail-
able at https://github.com/MartinBeal/political_connectivity.


SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/10/eabd7225/DC1
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Supplementary Materials  


Supplementary Materials and Methods  


GLS filtering and sensitivity analysis  


We did not standardize the processing of the raw light-level geolocation (GLS) underlying  


the data sets analyzed herein. However, the majority of data sets have already been published in  


species-specific accounts whereby authors used accepted methods ranging from state-space  


models and incorporation of sea-surface temperature for refinement of latitudes (41) to speed- 


distance-angle thresholds for filtering (42), or expert judgement of light-level interference (43).   


In order to set a common standard of reliability across GLS data sets, a series of filters were used  


to remove obviously erroneous fixes. For all data sets, fixes above 65°N and below -75°S latitude  


were removed, as albatrosses and large petrels do not frequent these latitudes. An additional  


equatorial filter was applied to three data sets from Black-footed Albatross, Laysan Albatross, and  


Grey Petrels. These were applied so as to remove false positives of species occurrence in  


countries in the wrong hemispheres (Southern: Black-footed and Laysan; Northern: Grey Petrel).  


These fixes were deemed erroneous, rather than true vagrancy movements, by close inspection of  


individual trajectories. All fixes falling within landlocked countries were removed, to reduce the  


detection of false positive species occurrence in these jurisdictions. Species-specific filters were  


used to remove fixes during breeding which were located further than the known maximum  


foraging range of C. diomedea plus the average error of GLS devices (i.e. max. forage range +  


186 km) from the breeding colony (25, 35, 43). These filters removed a mean of 0.45% (+/- 1.52)  


of all fixes for each breeding site-species combination.  


Since latitudinal estimates from GLS data are unreliable around the equinoxes, an  


asymmetrical filter was also used to remove fixes during these periods (March equinox: -21, +7  







days; September equinox: -7, +21 days) (44). As GLS data sets from 4 species (Ardenna bulleri, 


A. carneipes, A. grisea, Procellaria parkinsoni) used sea-surface temperature (SST) to estimate 


latitudes, fixes during the equinox periods were retained in these cases. 


To test the potential effect of the spatial error of GLS devices on the quantification of 


species richness and time spent, we performed in iterated re-sampling procedure. For each 


iteration, we re-sampled all GLS points by combining a random direction drawn from a uniform 


distribution (0-360) with a distance drawn from a normal distribution (mean=0, SD=186 km) and 


then calculated the species richness and time spent by albatrosses and large petrels. The results of 


this analysis are presented in fig S3. 


 


Supplementary Figures 


fig. S1 


 







fig. S1. Global map of tracking data set. Red circles are 87 different tagging locations, and  


purple dots signify the resultant tracking data, post-filtering, used to analyze annual distributions  


of albatrosses and large petrels with respect to political borders.  


  


  


  


  


  


fig. S2  


  


fig. S2. Areas of competence of Regional Fisheries Management Organizations. Dark gray  


polygons outlined in black represent Exclusive Economic Zones of countries. Outside this, areas  


variably colored and patterned represent Areas of Competence for RFMOs. NPFC=North Pacific  


Fisheries Commission, NAFO=Northwest Atlantic Fisheries Organization, NEAFC=North East  


Atlantic Fisheries Commission, NASCO=North Atlantic Salmon Conservation Organisation,  


SEAFO=South East Atlantic Fisheries Organisation, NPAFC = North Pacific Anadromous Fish  


Commission, SIOFA=Southern Indian Ocean Agreement, SPRFMO=South Pacific Fisheries  


Management Organisation, CCAMLR=Convention on the Conservation of Antarctic Living  







Marine Resources, CCBSP=Convention on the Conservation and Management of Pollock  


Resources in the Central Bering Sea, IATTC=Inter-American Tropical Tuna Commission,  


WCPFC=West Central Pacific Fisheries Commission, ICCAT=International Commission for the  


Conservation of Atlantic Tunas, IOTC=Indian Ocean Tuna Commission  


  


fig. S3   


  


fig. S3 Sensitivity of importance measures to GLS spatial error  


Importance of political areas to albatrosses and large petrels, measured in terms of species  


richness (A-B) and total annual time spent (C). Error bars show the range in the total estimated  


richness and time spent (ignoring visiting or breeding categories) for each political area calculated  


across 100 iterations, wherein GLS points were re-sampled to simulate the effect of GLS spatial  


error, which has an average effect of +/- SD 186 km displacement from the estimated location.   







 







  


fig. S4 Importance estimates and jurisdiction area  


(A) Species richness estimated from tracking data and area of national jurisdictions and the high  


seas (log scale). (B) Estimated annual time spent in national jurisdictions per square kilometer of  


area. Sovereignty of jurisdictions in parentheses are disputed by the listed countries. (C) Time  


spent strength per area of legal competence for each RFMO against the size of the area. ‘Time  


spent strength’ is an index of importance calculated as the percentage of the species’ annual time  


spent in an area, summed across all species visiting the area.  


  


Other Supplementary Material  


data file S1. (Excel) Estimated species richness of albatrosses and large petrels and annual  


time spent per country. (A) Breeding origin countries. (B) Countries visited that do not host  


breeding. “Total” is the total estimated richness, “Breeding” is the total richness of breeding  


species, “Visiting” is the total richness of species which visit from other countries. “Breed only”  


is the number of species which only occur via breeding populations located there. “Visit only” is  


the component of the total richness made up of species which occur in the country but do not have  


any breeding populations there. “Both” signifies the number of species whose occurrence in the  


country is made up of both birds that breed in the country and those that breed elsewhere.  “Total  


breeders” is the number of total estimated individual breeding albatrosses and large petrels under  


each jurisdiction. “Total (Time Spent)” is the estimated total amount of annual time spent in the  


country by the global population of albatrosses and large petrels. “Breeders” is the annual time  


spent in the country by breeding populations originating in that country, and “Visitors” is the time  


spent by birds which breed in another jurisdiction. “True breeding richness” is the number of  


breeding species counted from all known breeding sites in the literature. “Diff” is the difference  


between the true and estimated richness based on available tracking data (column “Breeding”).  







 


data file S2. (Excel) All connections between breeding origin countries and other political  


areas. This is the full data set underlying Fig. 3. (A) All connections between breeding origins  


and other countries and the high seas. (B) All connections between breeding countries and high  


seas RFMO competence areas. Nbreed is the number of albatross and large petrel species breeding  


in the country. Visited jurisdictions are in descending order of the relative strength of connection  


between the jurisdictional areas. Strength reflects the amount of annual time spent by the  


populations of large petrels breeding under the countries’ jurisdiction, as well as the relative  


contribution of said populations to the global breeding population of each species. Nvisit is the  


number of species which constitute this connection between political areas.  


data file S3. (Excel) Population estimates. Island group and global population estimates for the  


populations and species of albatrosses and large petrels studied herein.   


data file S4. (Excel) Summary of tracking data sets from each breeding population of  


albatrosses and large petrels after filtering steps. Ntracks is the number of tracks of a certain  


device-type (‘Device’), collected from a total of Nbirds in the population. Dtotal is the number of  


total tracking days, where Min and Max represent the range of track durations. Ycovered and Ymissed  


are then, respectively, the resulting number of days of the year with and without tracking data for  


the population.  


data file S5. (Excel) Estimated species richness and annual time spent with high data  


filtering threshold (A) and alternate sovereignty assignment (B).  


data file S6. (Excel) All connections between breeding origin countries and other political  


areas with high data filtering threshold (A) and alternate sovereignty assignment (B).  


movie S1. Animated global monthly distribution of time spent. Distribution of adult  


albatrosses and large petrels is calculated on a monthly basis, in terms of time spent in 452 sq. km  


grid cells across the world.  
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